2013(CS)]

Promotional Banner

Similar Questions

Explore conceptually related problems

If a = sqrt((2013)^(2) + 2013+2014) , then the value of a is

If a = sqrt((2013)^(2) + 2013 + 2014) , then the value of a is

sin^(-1)(sin2013^(@))+cos^(-1)cos(2013^(@))+tan^(-1)(tan2013 is equal to

int_(1)^(2013)[(x-1)(x-2)...(x-2013)]dx

int_(1)^(2013)[(x-1)(x-2)...(x-2013)]dx

int_(1)^(2013)[(x-1)(x-2)...(x-2013)]dx

Find the remainder when 1^(2013)+2^(2013)+3^(2013)+...+2012^(2013) is divisible by 2013

Real root of the equation (x-1)^(2013)+(x-2)^(2013)+(x-3)^(2013)+.......+(x-2013)^(2013)=0 digits is :

The digit in the unit place of 17^(2013)+11^(2013)-7^(2013)