Home
Class 12
MATHS
" 10.If "f(x)=int(sin^(4)t+cos^(4)t)dt" ...

" 10.If "f(x)=int(sin^(4)t+cos^(4)t)dt" then "f(x+pi)" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x) =int_(0)^(x) sin^(4)t dt , then f(x+2pi) is equal to

If f(x)=int_(0)^(x)(sin^(4)t+cos^(4)t)dt, then f(x+pi) will be equal to

f(x) = int_(x)^(x^(2))(e^(t))/(t)dt , then f'(t) is equal to :

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

If f(x) = int_(0)^(x)(2cos^(2)3t+3sin^(2)3t)dt , f(x+pi) is equal to :

If f(x)=cos x-int_(0)^(x)(x-t)f(t)dt, thenf '(x)+f(x) is equal to (a)-cos x(b)-sin x(c)int_(0)^(x)(x-t)f(t)dt (d) 0

If f(x)=cos-int_(0)^(x)(x-t)f(t)dt, then f'(x)+f(x) equals