Home
Class 12
MATHS
lim(x->0) (b^x-1)/(a^x-1)...

`lim_(x->0) (b^x-1)/(a^x-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->0) (x^3-3x+1)/(x-1)

Evaluate : lim_(x rarr 0)(a^x-1)/(b^x-1) .

Evaluate : lim_(x to 0)(a^(x)-1)/(b^(x)-1) .

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(x to 0) (2^(x)-1)/(x) +lim_(x to 0) (3^(x)-1)/(x) - lim_(x to 0) ((6^(x)-1)/(x)) equals :

lim_(x→0) (√(x+1)−1)/x

Using lim_(x to 0)(e^(x)-1)/(x)=1 , show that, lim_(x to 0)log_(e)(1+x)/(x)=1

Use formula lim_(x rarr0)(a^(x)-1)/(x)=log(a) to find lim_(x rarr0)(2^(x)-1)/((1+x)^((1)/(2))-1)