Home
Class 12
MATHS
If A=[3-2 4-2] and I=[1 0 0 1] , then pr...

If `A=[3-2 4-2]` and `I=[1 0 0 1]` , then prove that `A^2-A+2I=O` .

Promotional Banner

Similar Questions

Explore conceptually related problems

If A A=[3-2 4-2] and I=[1 0 0 1] , find k so that A^2=k A-2I .

If A A=[[3,-2],[ 4,-2]] and I=[[1, 0],[ 0, 1]] , find k so that A^2=k A-2I .

If A=[[3,-2],[4,-2]] and I=[[1,0],[0,1]] , find k so that A^2=kA-2I

If A=[(1, 2 ,2 ),(2 ,1 ,2),( 2 ,2, 1)] , then prove that A^2-4A-5I=O .

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I

If A =[[1,2,2],[2,1,2],[2,2,1]] then prove that A^2-4A-5I=0 .

If A = [(4,2),(-1,1)] and I = [(1,0),( 0,1)] prove that (A - 2I) (A - 3I) = 0