Home
Class 12
MATHS
If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y), pro...

If `sqrt(1-x^2) + sqrt(1-y^2)=a(x-y)`, prove that `(dy)/(dx)= sqrt((1-y^2)/(1-x^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), provethat (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^2) + sqrt(1-y^2) = a(x-y), show that dy/dx = sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1 -x^2) + sqrt(1-y^2) = a(x-y), show that, (dy)/(dx) = sqrtfrac(1-y^2)(1-x^2)

Consider the equation sqrt(1-x^2)+sqrt(1-y^2)=a(x-y) Prove that dy/dx=sqrt((1-y^2)/(1-x^2)

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))