Home
Class 8
MATHS
(n-1/n)(n+1/n)(n^2+1/(n^2))...

`(n-1/n)(n+1/n)(n^2+1/(n^2))`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n-1)-(n)/(1-2n).(n)/(n^(2)+1)] is

Sum of the series S_(n) =(n) (n) + (n-1) (n+1) + (n-2) (n+2) + …+ 1(2n-1) is

(i)The sum of the first n natural numbers is [n/3(2n+1)(2n-1),(n^2(n+1)^2)/4,n/6(n+1)(2n+1),(n(n+1))/2]

If n be a positive integer such that n<=3, then the value of the sum to n terms of the series 1.n-((n-1))/(1!)(n-1)+((n-1)(n-2))/(2!)(n-2)-((n-1)(n-2)(n-3))/(3!)(n-3)+dots

(lim_(n rarr oo)[(2n)/(2n^(2)-1)(cos(n+1))/(2n-1)-(n)/(1-2n)(n(-1)^(n))/(n^(2)+1)]is1(b)-1(c)0(d) none of these

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

The value of lim_(ntooo) [(2n)/(2n^(2)-1)"cos"(n+1)/(2n+1)-(n)/(1-2n).(n)/(n^(2)+1)] is

lim_(n-gtoo)[(1+1/n)(1+2/n)(1+n/n)]^(1/n)