Home
Class 12
MATHS
[" Show that the circle on the chord "x ...

[" Show that the circle on the chord "x cos alpha+y sin alpha-p=0" of the circle "x^(2)+y^(2)=a^(2)" as diameter is "],[x^(2)+y^(2)-a^(2)-2p(x cos alpha+y sin alpha-p)=0]

Promotional Banner

Similar Questions

Explore conceptually related problems

The circle on the chord x cos alpha + y sin alpha -p= 0 of the circle x^2 + y^2 - 2 = 0 as diameter is:

Show that the equation of the circle described on the chord x cos alpha + y sin alpha = p of the circle x^(2) + y^(2) = a^(2) as diameter is x^(2) + y^(2) - a^(2) - 2p (x cos alpha + y sin alpha - p) = 0

The circle on the chord xcos alpha + ysin alpha =p of the circle x^2+y^2=r^2 as diameter is

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

The line x sin alpha - y cos alpha =a touches the circle x ^(2) +y ^(2) =a ^(2), then,

The gradient of the tangent line at the point (a cos alpha,a sin alpha) to the circle x^(2)+y^(2)=a^(2)

Show that the straight line x cos alpha+y sin alpha=p touches the curve xy=a^(2), if p^(2)=4a^(2)cos alpha sin alpha

If the line y cos alpha = x sin alpha +a cos alpha be a tangent to the circle x^(2)+y^(2)=a^(2) , then