There are two wires A and B of same mass and of the same material. The diameter of wire A is one-third the diameter of wire B. If the resistance of wire A is `30 Omega`, find the resistance of wire B.
Text Solution
Verified by Experts
Here, `R_(A) =30 Omega`. Let `l^(A), D^(A)` be the length and diameter of wire A and `l_(B),D^(B)` be the length and diameter of wire B. Let d be the density of the material of wires A and B. Mass of the wire = volume `xx` density = area of cross-section `xx` lenght `xx` density As mass of two wires is same to `m=pi D_(A)^(2)/4 xx l_(A) xx d = pi D_(B)^(2)/4 xx l_(B) xx d` or `D_(A)^(2)l_(A)=D_(B)^(2)l_(B)` or `l_(B)/l_(A) =D_(A)^(2)/D_(B)^(2)=(D_(B//3))^(2)/D_(B)^(2)=1/9` `R_(B)/R_(A) = (4 rho l_(B)//(pi D_(B)^(2)))/(4 rho l_(A)//(pi D_(A)^(2))) = l_(B)/l_(A) xx D_(A)^(2)/D_(B)^(2) = 1/9 xx 1/9 =1/81` `R_(B)=R_(A)/81 =30/81=0.37 Omega`
Topper's Solved these Questions
CURRENT ELECTRICITY
PRADEEP|Exercise Conceptual Problems|3 Videos
CURRENT ELECTRICITY
PRADEEP|Exercise Very short Q/A|7 Videos
COMMUNICATION SYSTEMS
PRADEEP|Exercise MODEL TEST PAPER-2|9 Videos
DUAL NATURE OF RADIATION AND MATTER
PRADEEP|Exercise Exercise|191 Videos
Similar Questions
Explore conceptually related problems
Two wires A and B are formed from the same material with same mass. Diameter of wire A is half of diameter of wire B. If the resistance of wire A is 32 Omega , find the resistance of wire B.
Two wires A and B equal mass and of the same metal are taken. The diameter of the wire A is half the diameter of wire B. If the resistance of wire A is 24 Omega , calculatate the resistance of wire B.
We have two wire A and B of the same mass and the same material. The diameter of the wire A is half of that B . If the resistance of wire A is 24 ohm them the resistance of wire B will be
Two wires A and B of the same material have their lengths in the ratio 5: 3 and diameter in the radius 2:3 . If the resistance of wire A is 15 Omega . find the resistance of wire B
Two wires A and B of the same material have their lengths in the ratio 1 : 5 and diameters in the ratio 3 : 2 . If the resistance of the wire B is 180 Omega , find the resistance of the wire A.
Two wires A and B have equal lengths and aremade of the same material , but diameter of wire A is twice that of wire B . Then, for a given load,
Two copper wires A and B of equal masses are taken. The length of A is double the length of B. If the resistance of wire A is 160 Omega , then calculate the resistance of the wire B.
When the diameter of a wire is doubled, its resistance becomes:
PRADEEP-CURRENT ELECTRICITY-Problems for Practice (B)