Home
Class 12
MATHS
If tan^(-1)(alpha+ibeta)=x+i y, then x i...

If `tan^(-1)(alpha+ibeta)=x+i y,` then `x` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)(alpha+i beta)=x+iy, then x is equal to

cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cos alpha))=x , then sin x is equal to a) tan^2""alpha/2 b) cot^2""alpha/2 c) tan alpha d) cot ""alpha/2

if cot^(-1)[sqrt(cos alpha)]-tan^(-1)[sqrt(cos alpha)]=x then sin x is equal to

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1)(x^(2)+y^(2))=alpha then (dy)/(dx) is equal to