Home
Class 12
MATHS
((3-2i)(2+3i))/((1+2i)(2-i))" an "7" ij ...

((3-2i)(2+3i))/((1+2i)(2-i))" an "7" ij "447" sill a differel "

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the conjugate of ((3-2i)(2+3i))/((1+ 2i)(2-i)) .

Find the conjuate of ((3-2i)(2+3i))/((1+2i)(2-i)) .

Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)) .

Find the conjugate of ((3-2i)(2+3i))/((1+2i)(2-i)) .

Show that (i)" "{((3+2i))/((2-3i))+((3-2i))/((2+3i))} is purely real, (ii)" "{((sqrt(7)+i sqrt(3)))/((sqrt(7)-i sqrt(3)))+((sqrt(7)- i sqrt(3)))/((sqrt(7) + i sqrt(3)))} is purely real.

(1+2i+3i^(2))/(1-2i+3i^(2)) equals i b.-i c.-1 d.4

Write the following in the form x + iy : ((3- 2i) (2+ 3i))/((1 + 2i) (2-i)) .

Let A = [a_(ij)] be 3 xx 3 matrix given by a_(ij) = {(((i+j)/(2))+(|i-j|)/(2),if i nej,),((i^(j)-(i.j))/(i^(2)+j^(2)),if i n=j,):} where a_(ij) denotes element of i^(th) row and j^(th) column of matrix A. On the basis of above information answer the following question: If a 3 xx3 matrix B is such that A^(2) +B^(2) = A +B^(2)A , then det. (sqrt(2)BA^(-1)) is equal to

(1+2i+3i^2)/(1-2i+3i^2) equals a. i b. -1 c. -i d. 4