Home
Class 12
MATHS
Let < an > be a sequence such that lim(...

Let `< a_n >` be a sequence such that `lim_(x->oo)a_n=0.` Then `lim_(n->oo)(a_1+a_2++a_n)/(sqrt(sum_(k=1)^n k)),` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If S_n=sum_(k=1)^n a_k and lim_(n->oo)a_n=a , then lim_(n->oo)(S_(n+1)-S_n)/sqrt(sum_(k=1)^n k) is equal to

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

The value of lim_(n->oo) sum_(k=1)^n log(1+k/n)^(1/n) ,is

If S_(n),=sum_(k=1)^(n)a_(k) and lim_(n rarr oo)a_(n)=a, then lim_(n rarr oo),(S_(n+1)-S_(n))/(sqrt(sum_(k=1)^(n)k)) is equal to

lim_(n rarr oo) 1/n^(3) sum_(k=1)^(n) k^(2)x =