Home
Class 9
MATHS
4^(2x)=(1)/(32)...

4^(2x)=(1)/(32)

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the value of x in each of the following: 2^(x-7)\ xx\ 5^(x-4)=1250 (ii) (4)^(2x+1/2)=1/(32)

Find whether the following equations have real roots. If real roots exist, find them 4x^(2)-(1)/(5)x+(1)/(32)=0

Solve for x, (4^(1/3))^(2x+1/2)=1/32

If (3sqrt4)^(2x+1/2)=1/32 , then x =

If (root(3)(4))^(2x+1/2)=1/32 , then x =

If (4^(1/3))^(2x+1/2)=1/32 , then x =

Solve for x : (81)^((3)/(4))-((1)/(32))^(-(2)/(5))+x((1)/(2))^(-1).2^(0) = 27

If |{:(4,1),(2,1):}|^(2)=|{:(3,2),(1,x):}|-|{:(x,3),(-2,1):}| , then the value of x is :

The value of k for which f(x)={{:(,(x^(2^(32))-2^(32)x+4^(16)-1)/((x-1)^(2)),x ne 1),(,k,x=1):} is continuous at x=1, is