Home
Class 12
MATHS
[" 46.If "x,y in R" and satisfy the equa...

[" 46.If "x,y in R" and satisfy the equation "xy(x^(2)-y^(2))=x^(2)+y^(2)" where "x!=0" then the minimum "],[" possible value of "x^(2)+y^(2)" is "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y in R and satisfy the equation xy(x^(2)-y^(2))=x^(2)+y^(2) where xne0 then the minimum possible value of x^(2)+y^(2) is

If x,y in R and satisfy the equation xy(x^(2)-y^(2))=x^(2)+y^(2) where xne0 then the minimum possible value of x^(2)+y^(2) is

If x,y in R and satisfy the equation xy(x^(2)-y^(2))=x^(2)+y^(2) where xne0 then the minimum possible value of x^(2)+y^(2) is

If x and y satisfy te equation xy-2x^(2)-9x+3y-16=0 then

If x and y satisfy te equation xy-2x^(2)-9x+3y-16=0 then

If x, y satisfy the equation, y^(x)=x^(y) and x=2y , then x^(2)+y^(2)=

If x, y satisfy the equation, y^(x)=x^(y) and x=2y , then x^(2)+y^(2)=

If x and y are non-zero number satisfying x^(2)+y^(2)=xy(x^(2)-y^(2)) .Then the minimum value of x^(2)+y^(2) is

If x,y in R satisfies (x+5)^(2)+(y-12)^(2)=(14)^(2), then the minimum value of sqrt(x^(2)+y^(2)) is

If x,y in R and satisfy (x+5)^(2)+(y-12)^(2)=14^(2) then the minimum value of x^(2)+y^(2) is