Home
Class 12
MATHS
If x = tan ((11pi)/8), then the value o...

If `x = tan ((11pi)/8)`, then the value of `4x^4-4x^3 + 6x^2-4x`, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If a = 8 and x = 4 , then the value of (3ax + 6x - 9)/(3a - 4x -2) is

For Which value of x is 4x + 3 > 6x - 8 ?

If tan^(-1)4=4tan^(-l)x, then x^(4)+x^(3)-6x^(2)-x+4 is equal to

If secx+sec^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equal to

f(x)=[Tan( pi/4)+Tan x]*[Tan (pi/4)+Tan(pi/4-x)]" and "g(x)=x(x+1)" .Then the value of "g[f(x)]" is equal to "

If x = tan'(pi)/(18) then 3x^(6) - 27x^(4) + 33x^(2) is equal to -

If x = tan'(pi)/(18) then 3x^(6) - 27x^(4) + 33x^(2) is equal to -

If secx+sec^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equal to 0 (b) 1 (c) 2 (d) 3