Home
Class 12
MATHS
The number of x in [0, 2pi] for which |s...

The number of `x in [0, 2pi]` for which `|sqrt(2"sin"^(4)x + 18"cos"^(2) x) -sqrt(2"cos"^(4)x + 18"sin"^(2)x)|`= 1, is

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of x in [0,2pi] for which sqrt(2sin^4 x+18cos^2 x)-sqrt(2cos^4 x+18sin^2 x)=1 is

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The number of values of x in (0, pi) satisfying the equation (sqrt(3) "sin" x + "cos" x) ^(sqrt(sqrt(3)"sin" 2x -"cos" 2x+ 2)) = 4 , is

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

The values of x in (0, pi) satisfying the equation. |{:(1+"sin"^(2)x, "sin"^(2)x, "sin"^(2)x), ("cos"^(2)x, 1+"cos"^(2)x, "cos"^(2)x), (4"sin" 2x, 4"sin"2x, 1+4"sin" 2x):}| = 0 , are

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot

Prove that sqrt(sin^4x+4cos^2x)-sqrt(cos^4x+4sin^2x)=cos2xdot