Home
Class 12
MATHS
The number of values of x where the func...

The number of values of x where the function `f(x)=cos x +cos (sqrt(2)x)` attains its maximum value is

Text Solution

Verified by Experts

`f(x) = cos x+ cos ( sqrt2 x)`
`x=0 => f(x)_(max) = 2`
`T(cos x) = 2 pi`
`T ( cos sqrt2 x) = ( 2 pi)/ sqrt2 = sqrt 2 pi`
so `2x = 2n pi`
`x= n pi`
`sqrt2 x = 2m pi`
`x = sqrt2 m pi`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

The number of values of x where the function f(x) = cos x + cos (sqrt2 x) attains its maximum is

The number of vlaues of x where the function f(x)= cos x + cos (sqrt(2) x) attains its maximum is

The number of values of x where the function f(x)=cosx+cos(sqrt2x) attains its maximum is

The number of values of x where the function f(x)=cos x+cos(sqrt(2)x) attains its maximum is 0( b) 1 (c) 2 (d) infinite

The number of values of x where the function f(x)=cosx+cos(sqrt(2)x) attains its maximum is 0 (b) 1 (c) 2 (d) infinite

The number of values of x where the function f(x)=cosx+cos(sqrt(2)x) attains its maximum is 0 (b) 1 (c) 2 (d) infinite

The number of values of x where the function f(x)=cosx+cos(sqrt(2)x) attains its maximum is (a) 0 (b) 1 (c) 2 (d) infinite

The number of values of x where the function f(x)=cosx+cos(sqrt(2)x) attains its maximum is 0 (b) 1 (c) 2 (d) infinite

The number of values of x for which f(x)= cos x + cos sqrt(2)x attains its maximum value is-