Home
Class 12
MATHS
Let f:[0,1]rarrR (the set of all real nu...

Let `f:[0,1]rarrR` (the set of all real numbers) be a function. Suppose the function `f` is twice differentiable, `f(0)=f(1)=0` and satisfies `f\'\'(x)-2f\'(x)+f(x) ge e^x, x in [0,1]`If the function `e^(-x)f(x)` assumes its minimum in the interval `[0,1]` at `x=1/4`, which of the following is true? (A) `f\'(x) lt f(x), 1/4 lt x lt 3/4` (B) `f\'(x) gt f(x), 0 ltxlt1/4 (C) f\'(x) lt f(x), 0 lt x lt 1/4` (D) `f\'(x) lt f(x), 3/4 lt x lt 1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[0,1]rarrR (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0)=f(1)=0 and satisfies f\'\'(x)-2f\'(x)+f(x) ge e^x, x in [0,1] If the function e^(-x)f(x) assumes its minimum in the interval [0,1] at x=1/4 , which of the following is true? (A) f\'(x) lt f(x), 1/4 lt x lt 3/4 (B) f\'(x) gt f(x), 0 lt x lt 1/4 (C) f\'(x) lt f(x), 0 lt x lt 1/4 (D) f\'(x) lt f(x), 3/4 lt x lt 1

Let f:[0,1]rarrR (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0)=f(1)=0 and satisfies f'(x)-2f\'(x)+f(x) ge e^x, x in [0,1] If the function e^(-x)f(x) assumes its minimum in the interval [0,1] at x=1/4 , which of the following is true? (A) f\'(x) lt f(x), 1/4 lt x lt 3/4 (B) f\'(x) gt f(x), 0 lt x lt 1/4 (C) f\'(x) lt f(x), 0 lt x lt 1/4 (D) f\'(x) lt f(x), 3/4 lt x lt 1

Let f:[0,1]rarrR (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0)=f(1)=0 and satisfies f''(x)-2f'(x)+f(x) ≥e^x, x ∈[0,1] If the function e^(-x)f(x) assumes its min in the interval [0,1] at x=1/4 , which of the following is true?

Let f:[0,1]rarrR be a function. Suppose the function f is twice differentiable, f(0)=f(1)=0 and satisfies f\'\'(x)-2f\'(x)+f(x) ge e^x, x in [0,1] Which of the following is true for 0 lt x lt 1 ?

Let f:[0,1]rarrR be a function. Suppose the function f is twice differentiable, f(0)=f(1)=0 and satisfies f\'\'(x)-2f\'(x)+f(x) ge e^x, x in [0,1] Which of the following is true for 0 lt x lt 1 ?

Let f[0, 1] -> R (the set of all real numbers be a function.Suppose the function f is twice differentiable, f(0) = f(1) = 0 ,and satisfies f'(x) – 2f'(x) + f(x) leq e^x, x in [0, 1] .Which of the following is true for 0 lt x lt 1 ?

Let f:[0,1] rarr R be a function.such that f(0)=f(1)=0 and f''(x)+f(x) ge e^x for all x in [0,1] .If the fucntion f(x)e^(-x) assumes its minimum in the interval [0,1] at x=1/4 which of the following is true ?