Home
Class 11
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity, then the value of the expression `1(2-omega)(2-omega^2)+2(3-omega)(3-omega^2) +...+(n-1) (n-omega)(n-omega^2) (n>=2) ` is equal to (A) `(n^2(n+1)^2)/4 - n` (B) `(n^2(n+1)^2)/4 +n` (C) `(n^2(n+1))/4 -n` (D) `(n(n+1)^2)/4 -n`

Text Solution

Verified by Experts

We can write the given expression as ,
`S = sum_(m=1)^n(m-1)(m-omega)(m-omega^2)`
So , general term in this expression can be given as,
`T_m = (m-1)(m-omega)(m-omega^2)`
`= (m-1)(m^2-(omega+omega^2)m+omega^3)`
As, `1+omega+omega^2 = 0=>omega+omega^2 = -1`
`:. T_m = (m-1)(m^2+m+1)` (As `omega^3 = 1`)
We know, `(a-1)(a^2+a+1) = a^3-1` ...
Promotional Banner

Similar Questions

Explore conceptually related problems

If omega is an imaginary cube root of unity. Find the value of the expression 1(2- omega)(2-omega^(2))+2(3-omega) +...+ (n-1)(n-omega)(n-omega^(2)) .

If omega is an imaginary cube root of unity then the value of (2-omega),(2-omega^(2))+2(2-omega)(3-omega^(2))+....+(n-1)(n-omega)(n-omega^(2)) is

Let omega is an imaginary cube root of unity then the value of 2(1+omega)(1+omega^(2))+ 3(2 omega+1)(2 omega^(2)+1)+... +(n+1)(n omega+1)(n omega^(2)+1) is

If omega(!=1) is a cube root of unity,then the sum of the series S=1+2 omega+3 omega^(2)+....+3n omega^(3n-1) is

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………

The value of the expression 1.(2-omega).(2-omega^2)+2.(3-omega)(3-omega^2)+.+(n-1)(n-omega)(n-omega^2), where omega is an imaginary cube root of unity, is………