Home
Class 12
MATHS
int(log(2)2)^(x)(dt)/(sqrt(e^(t)-1))=(pi...

int_(log_(2)2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6)rArr x=

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(ln2)^(x)(dt)/(sqrt(e^(t)-1))=(pi)/(6), then x=

If int_(log2)^(x) (1)/(sqrt(e^(x)-1))dx=(pi)/(6) then x is equal to

int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6) , then t=

If int(log 2)^(x) (dy)/(sqrt(e^(y) -1)) = (pi)/(6) , prove that x = log 4

If : int_(ln 2)^(x)(1)/(sqrt(e^(t)-1))dt=(pi)/(6) , then : x =

The solution for x of the equation int_(sqrt(2))^(x)(dt)/(t sqrt(t^(2)-1))=(pi)/(2) is: (A) 2(B)pi(C)(sqrt(3))/(2) (D) 2sqrt(2)

The solution for x of the equation int_(sqrt2)^(x)(dt)//t(sqrt(t^(2)-1))=(pi)/(2) is

If int_(1)^(x)(dt)/(|t|sqrt(t^(2)-1))=(pi)/(6) then x can be equal to

If int_(ln2)^x(dt)/(sqrt(e^t-1))=pi/6 , then x=