Home
Class 12
MATHS
[" If "sin x+sin^(2)x+sin^(3)x=1," then ...

[" If "sin x+sin^(2)x+sin^(3)x=1," then the value of "cos^(6)x-4],[cos^(4)x+8cos^(2)x" equals "]

Promotional Banner

Similar Questions

Explore conceptually related problems

If sin x+sin^(2)x+sin^(3)x=1 then find the value of cos^(6)x-4cos^(4)x+8cos^(2)x

If sinx + sin^(2)x + sin^(3)x = 1 , then : cos^(6)x - 4cos^(4)x + 8cos^(2)x equals :

" If "cos x+cos^(2)x+cos^(3)x=1" ,then the value of "sin^(6)x-4sin^(4)x+8sin^(2)x" is"

If sin x + sin^(2) x= 1 , then the value of cos^(8) x - cos ^(4) x + 2cos^(2)x -1 is equal to :

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sinx+sin^2x+sin^3x=1 then find the value of cos^6x-4cos^4x+8cos^2x

If sin x + sin ^(2) x=1 then the value of (cos ^(8) x+2 cos ^(6)x +cos ^(4) x) is-

If sin x + sin^(2)x = 1 , then what is the value of cos^(8)x + 2 cos^(6)x + cos^(4)x ?

If sin x+sin^(2)x=1 then write the value of cos^(8)x+2cos^(6)x+cos^(4)x

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .