Home
Class 8
MATHS
" 13.If "a=xy^(p-1),b=xy^(q-1)" and "c=x...

" 13.If "a=xy^(p-1),b=xy^(q-1)" and "c=xy^(r-1)," prove that "a^(q-r)b^(r-p)c^(p-q)=1

Promotional Banner

Similar Questions

Explore conceptually related problems

If a=x y^(p-1),\ b=x y^(q-1) and c=x y^(r-1) , prove that a^(q-r)b^(r-p)\ c^(p-q)=1

if a=xy^(p-1),b=xy^(q-1),c=xy^(r-1) show that a^(q-r).b^(r-p).c^(p-q)=1

If a=xy^(p-1),b=yz^(q-1),c=zx^(r-1) , then a^(q-r)b^(r-p)c^(p-q) is equal to

(2) If a=x^(q+r)*y^(p) , b=x^(r+p)*y^(q) , c=x^(p+q)y^(r) , show that a^(q-r)b^(r-p)c^(p-q)=1

If the pth, qth and rth terms of a G.P. are a,b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If the p^(t h) ,q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)""b^(r-p)""c^(p-q)=1 .

If the p^(t h) , q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)b^(r-p)c^(p-q)=1 .

If the p^(t h) , q^(t h) and r^(t h) terms of a GP are a, b and c, respectively. Prove that a^(q-r)""b^(r-p)""c^(p-q)=1 .

If a, b, c, be respectively the pth, qth and rth terms of a G.P., prove that a^(q-r).b^(r-p).c^(p-q) = 1

If the p^(th) , q^(th) and r^(th) terms of a G.P. are a, b and c, respectively. Prove that a^(q-r) b^(r-p)c^(P-q)=1 .