Home
Class 12
MATHS
Let f(x)=int2^x (dt)/sqrt(1+t^4) and g ...

Let `f(x)=int_2^x (dt)/sqrt(1+t^4) and g` be the inverse of `f`. Then, the value of `g'(x)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4)) and g be the inverse of f. Then , the value of g'(0) is

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f. Then the value of g'(0) is a)1 b)17 c) sqrt(17) d)None of these

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_2^x(dt)/(sqrt(1+t^4))a n dg(x) be the inverse of f(x) . Then the value of g'(0)

Let f(x)=int_(2)^(x)(dt)/(sqrt(1+t^(4))) and g be the inverse of f then the value of g^(')(0) is

Let f(x)=int_(x)^(3)(dt)/(sqrt(1+t^(5))) and g be the inverse of f. Then the value of g'(0) is equal to

Let f(x)=int_(4)^(x)(dt)/(sqrt(1+t^(3))) and g be the inverse of f ,then the value of g'(0) is equal to

Let f(x)=int_(0)^(x)(dt)/(sqrt(1+t^(3))) andg(x) be the inverse of f(x). Then the value of 4(g'(x))/((g(x))^(2))is_(--)