Home
Class 12
MATHS
A=[[1,2,2],[2,1,2],[2,2,1]]," then "A^(2...

A=[[1,2,2],[2,1,2],[2,2,1]]," then "A^(2)-4A" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,2],[-1,-2]] then A^(2) is equal to

A=[[1,2,2],[2,1,2],[2,2,1]] , then Find 4A and A^2

If A=[[1,2,2],[2,1,2],[2,2,1]] show that A^2-4A is a scalar matrix.

If A= [[1,2,2],[2,1,2],[2,2,1]] , find A^2-4A-5I=O

A=[[1,2,2],[2,1,2],[2,2,1]] , then show that A^2-4A=5I_3

If A=[[1,2],[-1,-2]] then A^2 is equal to

If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal to 0, then (A^(2)-4A)A^(-1)=

If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1) exist and not equal to 0, then (A^(2)-4A)A^(-1)=

A=[{:(1,2,2),(2,1,2),(2,2,1):}] , then A^(3) - 4A^(2) -6A is equal to

If A =[[1,2,2],[2,1,2],[2,2,1]] then prove that A^2-4A-5I=0 .