Home
Class 11
MATHS
" The value of "3(sin x-cos x)^(4)+6(sin...

" The value of "3(sin x-cos x)^(4)+6(sin x+cos x)^(2)+4(sin^(6)x+cos^(6)x)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: 3(sin x-cos x)^(4)+6(sin x+cos x)^(2)+4(sin^(6)x+cos^(6)x)=13

Prove that: 3 (sin x-cos x) ^ (4) +6 (sin x + cos x) ^ (2) +4 (sin ^ (6) x + cos ^ (6) x) -13 = 0

Show that : 3 (sin x - cos x)^4 + 6 (sin x + cos x)^2 + 4(sin^6 x + cos^6 x) = 13 .

Prove that: 3 (sin x-cos x)^4+ 6 (sin x +cosx)^ 2+4 (sin^6 x+ cos^6 x) -13=0

2 [ sin x - cos x ]^(4) + 6 [ sin x + cos x ]^(2) + 5 [ sin^(6)x + cos^(6) x ] = ? (a)6 (b)4 (c)3 (d)13

Value of sin^(6)x+cos^(6)x+sin^(4)x+cos^(4)x+3+5sin^(2)x cos^(2)x is

Show that 3(sin x- cos x)^(4)+4 (sin ^(6)x+cos^(6)x)+ 6(sin x+cos x)^(2)=13

Find the value of : 2 (sin^(6) x + cos^(6)x) - 3 (sin^(4) x + cos ^(4)x) + 2 .

Prove that 3 (sin x-cos x) ^ (4) +4 (sin ^ (6) x + cos ^ (6) x) +6 (sin x + cos x) ^ (2) = 13