Home
Class 11
MATHS
If sqrt(1-x^4)+sqrt(1-y^4)=k(x^2-y^2), p...

If `sqrt(1-x^4)+sqrt(1-y^4)=k(x^2-y^2)`, prove that `dy/dx=(xsqrt(1-y^4))/(ysqrt(1-x^4))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(1-x^4)+sqrt(1-y^4)=k(x^2-y^2) ,show that y_1=(xsqrt(1-y^4))/(ysqrt(1-x^4))

If sqrt(1-x^4) + sqrt(1-y^4) =k(x^2 - y^2) then show that dy/dx = {x sqrt(1-y^4)}/{y sqrt(1-x^4)}

If sqrt(1-x^2)+sqrt(1-y^2)=a(x-y), prove that (dy)/(dx)=sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y), prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^2) + sqrt(1-y^2)=a(x-y) , prove that (dy)/(dx)= sqrt((1-y^2)/(1-x^2))

If sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx)=sqrt((1-y^(2))/(1-x^(2)))

If sqrt(1-x^(2)) + sqrt(1-y^(2))=a(x-y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2)))