Home
Class 11
MATHS
If [] denotes the greatest integer and {...

If [] denotes the greatest integer and {} denotes the fractional part, then the domain of the real valued function `f(x)=(x !sqrt(ln(1000/x)))/(sqrt(1000 x^2-999(x)^3-990(x)^2-50 x+60))` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function and {.} denotes the fractional part,then the domain of the function f(x)=sqrt((x-1)/(x-{x}))+ln(3-[x+[2x]]) is

If [.] denotes the greatest integer function then the domain of the real-valued function log[x+(1)/(2)]|x^(2)-x-2| is

If [x] denotes the greatest integer <=x and f(x)=(1)/([x])+sqrt((2-x)x, then ) the domain of f is

If [x] denotes the greatest integer function, then the domain of the function f(x)=sqrt((x-[x])/(log (x^(2)-x))) is

If [x] denotes the greatest integer le x and f(x)=(1)/([x])+sqrt((2-x)x) , then domain of f is :

If [x] denotes the greatest integer lt x then the domain of the function function f(x) =sqrt((4-x^2)/([x]+2)) is

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).

f(x)=log(x-[x]) , where [*] denotes the greatest integer function. find the domain of f(x).