Home
Class 11
MATHS
The domain of the function f(x)=sqrt(x^1...

The domain of the function `f(x)=sqrt(x^12-x^3+x^4-x+1)/(2sqrt(2{x}^2-3{x}+1),` (where {} denotes the fractional part functio) is

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=sqrt(x-sqrt(1-x^2)) is

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

f(x)=sqrt((x-1)/(x-2{x})) , where {*} denotes the fractional part.

The domain of the function f(x)=sqrt(x-sqrt(1-x^(2))) is

The domain of the function f(x)=sqrt(-log_.3 (x-1))/(sqrt(x^2+2x+8)) is

The domain of the function f(x)=sqrt(x-sqrt(1-x^(2))) is :

The domain of the function f(x)=(1)/(sqrt({x}))-ln(x-2{x}) is (where {.} denotes the fractional part function)

" 4.The domain of the function "f(x)=(1)/(sqrt({sin x}+{sin(pi+x)}))" where "{" -} denotes the fractional part,is "