Home
Class 12
MATHS
If g(x)=int(0)^(x)cos^(4)t dt, then g(x+...

If `g(x)=int_(0)^(x)cos^(4)t dt,` then `g(x+pi)` equals

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals

STATEMENT-1 : If g(x)=int_(0)^(x)cos^(4)t dt then g(x+pi) is equal to g(x)+g(pi) STATEMENT-2 : If {x} represents the fractional part of x then int_(0)^(100){sqrt(x)} is equal to (2000)/(3) STATEMENT-3 : The value of int_(-(1)/(2))^((1)/(2))(alphalog((1+x)/(1-x))+beta)dx depends on the value of beta .

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If g(x)=int_(0)^(x)cos^(4)tdt , then g(x+pi) is equal to a) g(x)+g(pi) b) g(x)-g(pi) c) g(x).g(pi) d) (g(x))/(g(pi))

Ifg(x)= int_(0)^(x) cos ^(4)t dt, "then " g (x+pi) equals

If g(x)=int_(0)^(x)cos4tdt , then g(x+pi) equals-

Ifg(x)= int_(0)^(x) cos 4t dt, "then " g (x+pi) equals

If g(x)= int_0^x cos^4t dt , then g(x + pi) equals