Home
Class 12
MATHS
A=|[x^(2)-2^(2)-3^(2)],[2^(2)-3^(2)y^(2)...

A=|[x^(2)-2^(2)-3^(2)],[2^(2)-3^(2)y^(2)],[2^(2)y^(2)-5^(2)]|" then "|AdjA|=

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1^(2),2^(2),3^(2)2^(2),3^(2),4^(2)3^(2),4^(2),5^(2)]] then |AdjA|=

Add 2x^(2)+5xy-2y^(2), 3x^(2)-2xy+5y^(2) and 2x^(2)+8xy+3y^(2)

If (x_(1), y_(1)), (x_(2), y_(2)), (x_(3), y_(3)) are the vertices of an equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)=(x_(3)-2)^(2)+(y_(3)-3)^(2) then x_(1)+x_(2)+x_(3)+2(y_(1)+y_(2)+y_(3))=

If (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3)) are vertices of equilateral triangle such that (x_(1)-2)^(2)+(y_(1)-3)^(2)=(x_(2)-2)^(2)+(y_(2)-3)^(2)=(x_(3)-2)^(2)+(y_(3)-3)^(2) then

If (4x^2-3y^2):(2x^2+5y^2)=12:19 then x:y=

Multiply: (2x^(2)-1)by(4x^(3)+5x^(2))(2xy+3y^(2))(3y^(2)-2)

(x+y)^(3)-(x-y)^(3) can be factorized as 2y(3x^(2)+y^(2)) (b) 2x(3x^(2)+y^(2))2y(3y^(2)+x^(2)) (d) 2x(x^(2)+3y^(2))