Home
Class 12
MATHS
Ifg(x)=int(0)cos^(4)tdt," then "g(x+pi)"...

Ifg(x)=int_(0)cos^(4)tdt," then "g(x+pi)" equals: "

Promotional Banner

Similar Questions

Explore conceptually related problems

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_(0)^(x)cos^(4)t dt, then g(x+pi) equals to (a) (g(x))/(g(pi)) (b) g(x)+g(pi) (c) g(x)-g(pi) (d) g(x).g(pi)

If g(x)=int_(0)^(x)cos4tdt , then g(x+pi) equals-

If g(x)=int_(0)^(x)cos^(4) dt , then g(x+pi) equals

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If g(x)=int_(0)^(x)cos^(4) t dt , then (x+pi) equals

If g(x)= int_0^x cos^4t dt , then g(x + pi) equals

If g(x)=int_(0)^(x)cos^(4)tdt , then g(x+pi) is equal to a) g(x)+g(pi) b) g(x)-g(pi) c) g(x).g(pi) d) (g(x))/(g(pi))