Home
Class 8
MATHS
x-(x)/(4)-(1)/(2)=3+(x)/(4)...

x-(x)/(4)-(1)/(2)=3+(x)/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

If the coficient of x in the expansion of (1+ax)^(8)(1+3x)^(4)-(1+x)^(3)(1+2x)^(4) is zero,then a =

Solve for : x :(x-1)/(x-2)+(x-3)/(x-4)=3 1/3,x!=2,4

Solve for x : (x-1)/(x-2)+(x-3)/(x-4)=3 1/3;\ \ x!=2,\ 4

Solve for :x:(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3),x!=2,4

Solve for x:(x-1)/(x-2)+(x-3)/(x-4)=3(1)/(3);x!=2,4

If y=log((1-x^(2))/(1+x^(2))), then (dy)/(dx)=(4x^(3))/(1-x^(4))( b) -(4x)/(1-x^(4))( c) (1)/(4-x^(4))(d)-(4x^(3))/(1-x^(4))

3x-(x-2)/(3)=4-(x-1)/(4)

Observe the following pattern (1x2)+(2x3)=(2x3x4)/(3)(1x2)+(2x3)+(3x4)=(3x4x5)/(3)(1x2)+(2x3)+(3x4)+(4x5)=(4x5x6)/(3) and find the of (1x2)+(2x3)+(3x4)+(4x5)+(5x6)

((x-1)/(x-2))-((x-2)/(x-3))=((x-3)/(x-4))-((x-4)/(x-5))

lim_(x rarr a){[(a^((1)/(2))+x^((1)/(2)))/(a^((1)/(4))-x^((1)/(4))))^(-1)-(2(ax)^((1)/(4)))/(x^((3)/(4))-a^((1)/(4))x^((1)/(2))+a^((1)/(2))x^((1)/(4))-a^((3)/(4)))]^(-1)-sqrt(2)^(log_(4)a)}^(8)