Home
Class 12
MATHS
lt(x rarr oo)x[log(x+1)-log x]=...

lt_(x rarr oo)x[log(x+1)-log x]=

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr oo)x(log(x+1)-log x)=

lim_(x rarr oo)(x-log x)/(x+log x)

underset(x to oo)"Lt" x[,log(x+1)-logx]=

lim_(x rarr0)[(log(a+x)-log a)/(x)]=...

Let L=lim_(x rarr oo)(x log x+2x*log sin((1)/(sqrt(x)))) then value of (-(2)/(L)) is ...

lim_(x rarr 3) (log(2x-3)-log(3x + 2))/(log(2x +1))= _______.

Evaluate the following limits, if necessary use 1'Hopital Rule: underset(x rarr oo)(lim) (x)/(log x)

Lt_(x rarr oo)(log x^(n)-[x])/([x])=

lim_(x rarr oo)(log(1+x))/(x)