Home
Class 11
MATHS
" 2."quad C(0)+3.C(1)+5.C(2)+.....+(2n+1...

" 2."quad C_(0)+3.C_(1)+5.C_(2)+.....+(2n+1)*C_(n)=(n+1)2^(n)

Promotional Banner

Similar Questions

Explore conceptually related problems

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If C_(0),C_(1), C_(2),...,C_(n) denote the cefficients in the expansion of (1 + x)^(n) , then C_(0) + 3 .C_(1) + 5 . C_(2)+ ...+ (2n + 1) C_(n) = .

If (1+x)^(n)=C_(0)+C_(1).x+C_(2).x^(2)+….+C_(n).x^(n). then prove that (i) C_(0)+2C_(1)+3C_(2)+…+(n-1)C_(n)=(n+2).2^(n-1) (ii)C_(0)+3C_(1)+5C_(2)+...+(2n+1)C_(n)=(n+1).2^(n)

Prove that C_(0)+3.C_(1)+5.C_(2)+….+(2n+1).C_(n)=(2n+2).2^(n-1).

If C_(0),C_(1),C_(2)…….,C_(n) are the combinatorial coefficient in the expansion of (1+x)^n, n, ne N , then prove that following C_(1)+2C_(2)+3C_(3)+..+n.C_(n)=n.2^(n-1) C_(0)+2C_(1)+3C_(2)+......+(n+1)C_(n)=(n+2)C_(n)=(n+2)2^(n-1) C_(0),+3C_(1)+5C_(2)+.....+(2n+1)C_n =(n+1)2^n (C_0+C_1)(C_1+C_2)(C_2+C_3)......(C_(n-1)+C_n)=(C_0.C_1.C_2....C_(n-1)(n+1)^n)/(n!) 1.C_0^2+3.C_1^2+....+ (2n+1)C_n^2=((n+1)(2n)!)/(n! n!)

Show that C_0 + 3C_1 + 5C_2 + .... +(2n+1) C_n = (n+1)(2^n)

prove that :C_(0)^(2)+3C_(1)^(@)+5C_(2)^(2)+...+(2n+1)C_(n)^(2)=((n+1)2n!)/((n!)^(2))

C_(0)-3C_(1)+5c_(3)+....+(-1)^(n)(2n+1)C_(n) is equal to