Home
Class 12
MATHS
int(0)^( pi/4)log(1+tan x)dx=(pi)/(8)log...

int_(0)^( pi/4)log(1+tan x)dx=(pi)/(8)log_(e)2

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that int_(0)^(pi/4)log(1+tanx)dx=(pi)/(8) log2.

Prove that int_(0)^((pi)/(4))log(1+tanx)dx=(pi)/(8)log2

8. int_0^(pi/4) log(1+tanx)dx

int_(0)^(pi//2) log (tan x ) dx=

int_(0)^((pi)/(2))log(tan x)*dx

int_0^(pi//2) log(tan x)dx =

Prove that: int_(0)^( pi/2)log|tan x+cot x|dx=pi log_(e)2

Statement-1: int_(0)^(pi//2) x cot x dx=(pi)/(2)log2 Statement-2: int_(0)^(pi//2) log sin x dx=-(pi)/(2)log2