Home
Class 9
MATHS
3v'7u^(2)+2u-sqrt(7)=0...

3v'7u^(2)+2u-sqrt(7)=0

Promotional Banner

Similar Questions

Explore conceptually related problems

Determine the degrees of the following polynomials : (7u^(2)-29)/(sqrt7u-sqrt29)

Identify the following as monomial binomial or trinomial expressions: (i) 7u^(6) (ii) y^(2)-2y+6 (iii) x^(2) (iv) x^(6)-sqrt(3)x (v) x^(3)-3x+2 (vi) u^(2)+2u

If u_(1) =sqrt2, u_(2) =sqrt(2sqrt(2)), u_(3) =sqrt(2sqrt(2sqrt2)),... then the value of u_(10):u_(9) is-

Let u_(1)=1,u_2=2,u_(3)=(7)/(2)and u_(n+3)=3u_(n+2)-((3)/(2))u_(n+1)-u_(n) . Use the principle of mathematical induction to show that u_(n)=(1)/(3)[2^(n)+((1+sqrt(3))/(2))^n+((1-sqrt(3))/(2))^n]forall n ge 1 .

Let u_(1)=1,u_2=2,u_(3)=(7)/(2)and u_(n+3)=3u_(n+2)-((3)/(2))u_(n+1)-u_(n) . Use the principle of mathematical induction to show that u_(n)=(1)/(3)[2^(n)+((1+sqrt(3))/(2))^n+((1-sqrt(3))/(2))^n]forall n ge 1 .

Let u_(1)=1,u_2=2,u_(3)=(7)/(2)and u_(n+3)=3u_(n+2)-((3)/(2))u_(n+1)-u_(n) . Use the principle of mathematical induction to show that u_(n)=(1)/(3)[2^(n)+((1+sqrt(3))/(2))^n+((1-sqrt(3))/(2))^n]forall n ge 1 .

Let u_(1)=1,u_2=2,u_(3)=(7)/(2)and u_(n+3)=3u_(n+2)-((3)/(2))u_(n+1)-u_(n) . Use the principle of mathematical induction to show that u_(n)=(1)/(3)[2^(n)+((1+sqrt(3))/(2))^n+((1-sqrt(3))/(2))^n]forall n ge 1 .

Let u-=ax+by+a root(3)(b)=0,v-=bx-ay+b root(3)(a)=0,a,b in R be two straight lines.The equations of the bisectors of the angle formed by k_(1)u-k_(2)v=0 and k_(1)u+k_(2)v=0, for nonzero and real k_(1) and k_(2) are u=0 (b) k_(2)u+k_(1)v=0k_(2)u-k_(1)v=0 (d) v=0

Let vec u,vec v and vec w be such that |vec u|=1,|vec v|=2 and |vec w|=3. If the projection of vec v along vec u is equal to that of vec w along vec u and vectors vec v and vec w are perpendicular to each other,then |vec u-vec v+vec w| equals 2 b.sqrt(7)c.sqrt(14)d.14