Home
Class 11
MATHS
The solution set of the inequality (tan^...

The solution set of the inequality `(tan^(-1)x cot^(-1)x)^(2)+5-5(tan^(-1)x)^(2)cot^(-1)x+(cot^(-1)x)^(2)-5cot^(-1)x+6(tan^(-1)x)^(2)+1lt0` is (m,n) ,the value of `cot^(-1)m-cot^(-1)n` is equal to (1) -1 (3) Zero

Promotional Banner

Similar Questions

Explore conceptually related problems

cot(tan^(-1)x+cot^(-1)x)

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

Solution set of the inequality ( cot^(-1) x)^(2) - ( 5 cot^(-1) x) + 6 gt 0 is

cot^(-1)x+cot^(-1)(n^(2)-x+1)=cot^(-1)(n-1)

The value of cot (tan^-1 x + cot^-1 x) is equal to :

Solution set of inequality (cot^-1x)^2-5cot^-1x+6>0 is

int(tan^(-1)x-cot^(-1)x)/(tan^(-1)x+cot^(-1)x)dx equals

int\ (tan^(-1)x - cot^(-1)x)/(tan^(-1)x + cot^(-1)x) \ dx equals