Home
Class 10
MATHS
If a+b+c=1, a^2+b^2+c^2=9 and a^3+b^3+c^...

If `a+b+c=1`, `a^2+b^2+c^2=9` and `a^3+b^3+c^3=1`, then `1/a + 1/b + 1/c` is (i)`0` (ii)`-1` (iii)`1` (iv)`3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If b ne c and |[a , a^2, 1+a^3],[ b, b^2, 1+b^3],[ c, c^2, 1+ c^3]| =0 then prove that a b c =-1

If a!=b!=c such that |[a^3-1,b^3-1,c^3-1] , [a,b,c] , [a^2,b^2,c^2]|=0 then

The roots of ax^2+3bx+c=0 are given by if 3b=a+c (i) 1,c/a (ii) -1,c/a (iii) -1,-c/a (iv) 1,-c/a

If a : b : c =1/4:1/3:1/2 , then a/b : b/c: c/a =? यदि a : b : c =1/4:1/3:1/2 , तो a/b : b/c: c/a =?

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^3)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are non coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If |(a,a^2,1+a^3),(b,b^2,1+b^3),(c,c^2,1+c^2)|=0 and vectors (1,a,a^2),(1,b,b^2) and (1,c,c^2) are hon coplanar then the product abc equals (A) 2 (B) -1 (C) 1 (D) 0

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c