Home
Class 12
MATHS
y^x = e^(y-x) prove that y' = (1+lny)^2 ...

`y^x = e^(y-x)` prove that `y' = (1+lny)^2 / lny`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y^(x) = e^(y -x) , prove that (dy)/(dx) = ((1 + log y)^2)/(log y) .

If y = (e^x - e^-x)/(e^x + e^-x) . Prove that dy/dx = 1 - y^2

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)=e^(y-x), prove that (dy)/(dx)=((1+log y)^(2))/(log y)

If y^(x)= e^(y-x) , then prove that (dy)/(dx)= ((1+ log y)^(2))/(log y)

If xy = e^(x-y) , prove that dy/dx = (y(x-1))/(x(y+1))

If e^x + e^y = e^(x+y) , prove that dy/dx = -e^(y-x)

If e^x + e^y = e^(x +y) , prove that (dy)/(dx) = (e^x (e^y - 1))/(e^y (e^x - 1))

If y = (e^(x)-e^(-x))/(e^(x)+e^(-x)) then prove that y = (e^(2x)-1)/(e^(2x)+1) .