Home
Class 12
MATHS
The distance between the line vecr=2hati...

The distance between the line `vecr=2hati-2hatj+3hat+lamda(veci-vecj+4veck)` and the plane `vecr.(veci+5vecj+veck)=5` is ` (A) 10/3sqrt(3)` (B) `10/9` (C) `10/3` (D) `3/10`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the angle between the line vecr=veci+vecj+3veck+lambda(2veci+vecj-veck) and the plane vecr.(veci+vecj)=1

The distance of the line vecr=2hati-2hatj+3hatk +lamda(hati-2hatj+4hatk) and the plane vecr.(hati+5hatj+hatk)=5 is (A) 10/3 (B) (1,-2) (C) 10/(3sqrt(3)) (D) 10/9

Find the angle between the line vecr=(veci+2vecj-veck)+lamda(veci-vecj+veck) and the normal to the plane vecr*(2veci-vecj+veck)=4 .

Find the cosine of the angel between the planes vecr.(2veci-3vecj-6veck)=7 and vecr.(6veci+2vecj-9veck)=5

Find the cosine of the angle between the planes vecr.(2veci-3vecj-6veck)=7 and vecr.(6veci+2vecj-9veck)=5

Find the angle between the vectors veci+2vecj+3veck and 3veci-vecj+2veck

find the shortest distance between the skew lines. vecr=(veci-vecj)+lambda(2veci+vecj+veck) and vecr=(veci+vecj-veck)+mu(2veci-vecj-veck)

Find the angle between the vectors 3veci-4vecj+veck and veci-3vecj+4veck .

The shortest distance between the lines vecr = (2 veci -vecj - veck) + lamda ( 2 veci + vecj + 2 veck) and vecr = (veci + 2 vecj + veck) + mu ( veci - vecj + veck) is

Find the shortest distance between the skew lines vecr=(veci+2vecj+veck)+lambda(veci-vecj+veck) and vecr=(2veci-vecj-veck)+eta(2veci+vecj+2veck)