Home
Class 11
MATHS
If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4...

If `tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(4) and x+y+z=1` then the value of `(x^(5)+y^(5)+z^(5))` is equal to `(1) Zero ``(2)-1``(3) 1``(4)2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi then x+y+z=

If tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=(pi)/(2) then x y+y z+z x=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2), prove that xy+yz+zx=1

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan^(-1) x + tan^(-1)y + tan^(-1)z= pi then x + y + z is equal to

If tan ^(-1) x+tan ^(-1) y+tan ^(-1) z=(pi)/(2), then 1-x y-y z-z x=

If tan^(-1)x+tan^(-1)y+tan^(-1)z=(pi)/(2) then prove that yz+zx+xy=1

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz

If tan^(-1)x+tan^(-1)y+tan^(-1)z=pi, show that x + y + z = xyz.

If tan^(- 1)x+tan^(- 1)y+tan^(- 1)z=pi prove that x+y+z=xyz