Home
Class 11
MATHS
The range of the function f(x)=sin cos(l...

The range of the function `f(x)=sin cos(ln((x^(2)+1)/(x^(2)+e)))` is (1) [sin cos1,1) (2) [sin cos1,cos1) (3) [sin cos1,sin1) (4) (sin cos1,sin1]

Promotional Banner

Similar Questions

Explore conceptually related problems

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

{ cos (sin ^(-1) x)}^(2) ={sin (cos ^(-1) x)}^(2)

If [sin^-1x]+[cos^-1x]=0, where x is a non negative real number and [.] denotes the greatest integer function, then complete set of values of x is - (A) (cos1 ,1) (B) (-1, cos1) (C) (sin1 , 1) (D) (cos1 , sin1)

(cos x)/(1-sin x)=(1+cos x+sin x)/(1+cos x-sin x)

(cos A)/(1-sin A)=(1+cos A+sin A)/(1+cos A-sin A)

(cos A)/(1-sin A)=(1+cos A+sin A)/(1+cos A-sin A)