Home
Class 11
PHYSICS
If A+B=C,|A|=2|B|and B.C=0, then...

If `A+B=C,|A|=2|B|and B.C=0,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If a/b =b/c and a,b, c gt 0 , then prove that (a+b)^2/(b+c)^2 = (a^2 +b^2)/(b^2 +c^2)

If in a triangle A B C angle B=90^0 then tan^2(A/2) is (b-c)/a (b) (b-c)/(b+c) (c) (b+c)/(b-c) (d) (b+c)/a

If in a triangle A B C angle B=90^0 then tan^2(A/2) is (b-c)/a (b) (b-c)/(b+c) (c) (b+c)/(b-c) (d) (b+c)/a

If a^2+b^2+c^2-a b-b c-c a=0, then find the relation between a,b and c

If a^2+b^2+c^2-a b-b c-c a=0, then (a) a+b=c (b) b+c=a (c) c+a=b (d) a=b=c

If two events A and B are such that P(A^(c))=0.3.P(B)=0.4 and P(A nn B^(c))=0.5 then P(A uu B^(c))=0.8(b)P[B nn(A uu B^(c))]=0.2P((B)/(A)uu B^(c))=0.25 (d) P((B)/(A)uu B^(c))=0.3

If a/b=b/c and a,b,c>0 then show that, (a+b+c)(b-c)=ab-c^2

If (b^2+c^2-a^2)/(2b c),(c^2+a^2-b^2)/(2c a),(a^2+b^2-c^2)/(2a b) are in A.P. and a+b+c=0 then prove that a(b+c-a),b(c+a-b),c(a+b-c) are in A.P.

If a/b=b/c and a,b,c>0 then show that, (a^2+b^2)/(ab)=(a+c)/b