Home
Class 11
MATHS
if y=logx^x prove that (dy)/(dx)=1+logx...

if `y=logx^x` prove that `(dy)/(dx)=1+logx`

Promotional Banner

Similar Questions

Explore conceptually related problems

If ylog x=(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2))

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/(1+logx)^2

If x^y=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^2)

x (dy)/(dx) + y = x logx

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^(y)=e^(x-y) , prove that (dy)/(dx)=(logx)/((1+logx)^(2)).

If x^y=e^(x-y), Prove that (dy)/(dx)=(logx)/((1+logx)^2)

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .