Home
Class 11
MATHS
If y=sinx.cos(2x) then prove that (dy)/(...

If `y=sinx.cos(2x)` then prove that `(dy)/(dx)=y[cotx-2tan2x]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=sin x*cos(2x) then prove that (dy)/(dx)=y[cot x-2tan2x]

If y=e^x(sinx+cosx) , then prove that, (d^2y)/(dx^2)-2dy/dx+2y=0

If sin(x+y)=y cos(x+y) ,then prove that (dy)/(dx)=-(1+y^(2))/(y^(2))

If y=sinx^(sinx^(sinx^dotoo)) , prove that (dy)/(dx)=(y^2cotx)/((1-ylogsinx))

If y=sin(sinx) then prove that (d^2y)/(dx^2)+tanx. (dy)/(dx)+y cos^2x=0

If y = a sinx + b cos x then prove that y^2 + ((dy)/(dx))^2 = a^2 + b^2 .

If y = log ( sqrt( sin x - cos x)) , that prove that (dy)/(dx) = - (1)/(2) tan ((pi)/( 4) + x)

If y,=2tan backslash(x)/(2), then prove that (dy)/(dx),=(2)/(1+cos x)

(dy)/(dx) = y tan x - 2 sinx