Home
Class 12
MATHS
[" 2.Prove that,| "[ax-by-cz],[" bretay ...

[" 2.Prove that,| "[ax-by-cz],[" bretay "],[cx+az][" by "-cz-ax" aztex "],[cy+bz]],[qquad [=(a^(2)+b^(2)+c^(2))(ax+by+cz)(x^(2)+y^(2)+z^(2))]]

Promotional Banner

Similar Questions

Explore conceptually related problems

|(ax,by,cz),(x^(2),y^(2),z^(2)),(1,1,1)|=

Prove the following: |[ax-by-cz,ay+bx,az+cx],[bx+ay,by-cz-ax,bz+cy],[cx+az,ay+bz,cz-ax-by]| = (a^2+b^2+c^2)(ax+by+cz)(x^2+y^2+z^2)

det[[ Prove that ax-by-cz,ay+bx,cx+azay+bx,by-cz-ax,bz+cycx+az,bz+cy,cz-ax-by]]=(x^(2)+y^(2)+z^(2))(a^(2)+b^(2)+c^(2))(ax+by+cz)

If x : a = y : b = z : c , then prove that (a^(2) + b^(2) + c^(2))(x^(2) + y^(2) + z^(2)) = (ax + by + cz)^(2)

Prove that: |[ax,by,cz], [x^2,y^2,z^2], [1,1,1]| = |[a,b,c],[x,y,z],[yz,zx,yx]|

If(a^(2)+b^(2)+c^(2))(x^(2)+y^(2)+z^(2))=(ax+by+cz)^(2) shewthatx :a=y:b=z:

If a^(2)+b^(2)+c^(2)=x^(2)+y^(2)+z^(2)=1, then show that ax+by+cz<1

If (a^(2)+b^(2)+c^(2))(x^(2)+y^(2)+z^(2))=(ax+by+cz)^(2), then show that x:a=y:b=z:c

Add: 6ax - 2by + 3cz, 6by - 11ax - cz and 1- cz - 2ax - 3by

If ax+cy+bz=X, cx+by+az=Y, bx+ay+cz=Z, show that (a^(2)+b^(2)+c^(2)-bc-ca-ab)(x^(2)+y^(2)+z^(2)-yz-zx-xy)=X^(2)+Y^(2)+Z^(2)-YZ-ZX-XY