Home
Class 12
MATHS
If x in (0,pi/2), then show that cos^(-1...

If `x in (0,pi/2),` then show that `cos^(-1)(7/2(1+cos2x)+sqrt((sin^2x-48cos^2x))sinx)=x-cos^(-1)(7cosx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x in(0,(pi)/(2)), then show that cos^(-1)((7)/(2)(1+cos2x)+sqrt((sin^(2)x-48cos^(2)x))sin x)=x-cos^(-1)(7cos x)

If x in (0,pi/2),t h e ns howt h a t d/(dx)cos^(-1){7/2(1+cos2x)+(sqrt(sin^2x-48cos^2x))sinx} =1+(7sinx)/sqrt(sin^2-48cos^2x)

If x in(0,(pi)/(2)), thenshowthat(d)/(dx)cos^(-1){(7)/(2)(1+cos2x)+(sqrt(sin^(2)x-48cos^(2)x))sin x}=1+(7sin x)/(sqrt(sin^(2)-48cos^(2)x))

If x in (0, (pi)/(2)) , then show that cos^(-1) ((7)/(2) (1 + cos 2 x) + sqrt((sin^(2) x - 48 cos^(2) x)) sin x) = x - cos^(-1) (7 cos x)

If x in (0, (pi)/(2)) , then show that cos^(-1) ((7)/(2) (1 + cos 2 x) + sqrt((sin^(2) x - 48 cos^(2) x)) sin x) = x - cos^(-1) (7 cos x)

sqrt(2)cos^(2)7x-cos7x=0

If sinx+sin^2x=1 then show that cos^2 x +cos^4 x=1

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx

int_0^(pi//4)(x^2(sin2x-cos2x))/((1+sin2x)cos^2x)dx