Home
Class 12
MATHS
" (hat) "quad " (i) "tan^(-1)ax+(1)/(2)s...

" (hat) "quad " (i) "tan^(-1)ax+(1)/(2)sec^(-1)bx=(pi)/(4)" (ii) tat "

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)sqrt(3)-sec^(-1)(-2)=(pi)/(3)

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

If 2Tan^(-1)x+Sec^(-1)x=pi//2 then x =

Find (I ) tan ^(-1) ( - sqrt(3)) (ii ) tan^(-1) ( tan (( 3pi )/(4)) (iii ) tan ( tan^(-1 ) (2019))

Solve the following equations (i) tan^(-1). ( x-1)/(x - 2) = tan ^(-1). ( x+1)/(x + 2) = pi/4 (ii) tan^(-1) 2 xx tan^(-1) 3x = pi/4

Evaluate : (I ) tan ^(-1) (tan"" (3pi )/(4)) (ii ) tan^(-1) ""( tan "" (pi )/(4))

Prove that : 2 tan^(-1)""(1)/(5)+sec^(-1)""(5sqrt(2))/(7)+2tan^(-1)""(1)/(8)=(pi)/(4)

Pove that i) tan^(-1)1/2+tan^(-1)2/11=tan^(-1)3/4 ii) tan^(-1)2/11+tan^(-1)7/24=tan^(-1)1/2 iii) tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3=pi/2 iv) 2tan^(-1)1/3+tan^(-1)/17=pi/4 v) tan^(-1)2-tan^(-1)1=tan^(-1)1/3 vi) tan^(-1)+tan^(-1)2+tan^(-1)3=pi vii) tan^(-1)1/2+tan^(-1)1/5+tan^(-1)1/8=pi/4 viii) tan^(-1)1/4+tan^(-1)2/9=1/2tan^(-1)4/3