Home
Class 11
MATHS
If y=log(sqrt(x)+1/sqrt(x)). Prove that ...

If `y=log(sqrt(x)+1/sqrt(x))`. Prove that `dy/dx=(x-1)/(2x(x+1))`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log(sqrt(x)+sqrt(1/x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(x+(1)/(x)), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))

If y=sqrt(x)+1/(sqrt(x)) , prove that 2x(dy)/(dx)=sqrt(x)-1/(sqrt(x))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^2-1))

If y=log{sqrt(x-1)-sqrt(x+1)} , show that (dy)/(dx)=(-1)/(2sqrt(x^2-1))

If y=log{sqrt(x-1)-sqrt(x+1)}, show that (dy)/(dx)=(-1)/(2sqrt(x^(2)-1))

If y=sqrt(x+sqrt(x+sqrt(x+…… prove that (dy)/(dx)=1/(2y-1)

y=sqrt(x)+(1)/(sqrt(x)), prove that 2x(dy)/(dx)=sqrt(x)-(1)/(sqrt(x))