Home
Class 11
MATHS
The points (x1, y1), (x2, y2), (x1, y2) ...

The points `(x_1, y_1), (x_2, y_2), (x_1, y_2) and (x_2, y_1)` are always

Promotional Banner

Similar Questions

Explore conceptually related problems

If the points (x_1,y_1), (x_2,y_2) and (x_1 + x_2, y_1+y_2) are collinear, prove that x_1y_2 = x_2y_1

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x^2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1),(x_2,y_2), and (x_3, y_3) are collinear show that (y_2-y_3)/(x_2x_3)+(y_3-y_1)/(x_3x_1)+(y_1-y_2)/(x_1x_2)=0

If the points (x_1, y_1), (x_2, y_2) and (x_3, y_3) be collinear, show that: (y_2 - y_3)/(x_2 x_3) + (y_3 - y_1)/(x_3 x_2) + (y_1 - y_2)/(x_1 x_2) = 0

Three points A(x_1 , y_1), B (x_2, y_2) and C(x, y) are collinear. Prove that: (x-x_1) (y_2 - y_1) = (x_2 - x_1) (y-y_1) .

Three points A(x_1 , y_1), B (x_2, y_2) and C(x, y) are collinear. Prove that: (x-x_1) (y_2 - y_1) = (x_2 - x_1) (y-y_1) .

If the points (x_(1),y_(1)),(x_(2),y_(2)), and (x_(3),y_(3)) are collinear show that (y_(2)-y_(3))/(x_(2)x_(3))+(y_(3)-y_(1))/(x_(3)x_(1))+(y_(1)-y_(2))/(x_(1)x_(2))=0