Home
Class 12
MATHS
Find (dy)/(dx), when x=a(t+sint) and y=a...

Find `(dy)/(dx)`, when `x=a(t+sint) and y=a(1-cost).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (d^2y)/(dx^2) when x=a(t-sint) and y = a (1+cost) at t = pi/2

Find (dy)/(dx) , if x=a(t-sint), y=a(1-cost)at t=(pi)/2

Find dy/dx of the following x=a(t-sint) , y=a(1-cost)

Find (dy)/(dx) if x =a (t-sint),y=a(1-cos t)?

Find dy/dx if x=a(t-sin t) , y=a(1-cost) .

Find dy/dx , If x=a(t-sint) , y=a(1+cost)

Find dy/dx for the following. x=a(t-sint),y=a(1+cost) .

Find dy/dx , If x = a(sint - t cost) and y = a(cost + t sint)

Find (dy)/(dx) if x=asqrt(cos2t) cost and y=asqrt(cos2t) sint then, find ((dy)/(dx)|)_(t=pi//6)

Find (dy)/(dx) , when x=(logt+cost),y=(e^(t)+sint)